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Abstract. The immittance spectra (i.e., impedance and modulus representations) are calculated for various

effective medium theories, i.e., the Maxwell-Wagner (MW), Hashin-Shtrikman (HS), Bruggeman Asymmetric

(BA) and Bruggeman Symmetric (BS) models, with emphasis on their individual microstructures. In addition the

brick-layer (BL) model is also considered. The BL and MW-HS models yield similar single impedance arcs for a

relatively low volume fraction conductive matrix (coating on the low conductivity phase). The BA model yields

single impedance arcs different from the MW-HS models. The BL and MW-HS models yield virtually identical

dual impedance arc behavior for a low volume fraction insulating matrix (coating on the high conductivity phase).

At low volume fractions of insulating matrix, the low frequency arc due to the insulating material for the BA model

is much smaller than for the MW-HS model. The BS model exhibits single impedance arc behavior when the

volume fraction of conductor is above or near the percolation threshold and dual arc behavior somewhat below the

percolation threshold. Equivalent circuits for these model materials are discussed, and application is made to

experimental data for various electroceramic systems.

Keywords: impedance spectroscopy, effective media theories, equivalent circuits, microstructure, grain

boundaries

1. Introduction

Impedance spectroscopy is routinely used to char-

acterize the electrical transport properties of

``composite'' electroceramics with heterogeneous

microstructures. The simplest spectra to understand

are for two component or phase systems where one

component coats the other. The coating component

should have a signi®cantly lower or higher con-

ductivity than the other. This component could be

grain boundaries or a true second phase distributed

uniformly at the interfaces of the granular component,

and with continuous 3D connectivity; the volume

fraction of the coating phase could range from very

small to nearly one. Effective media (EM) theories

can be used in both of these cases (conductive or

insulating coating phase).

In other electroceramics, with a large contrast in

the conductivities of the two components, a rapid

change in the conductivity can be observed at the

critical volume fraction where the conducting

component changes from 0D to 3D connectivity.

This can in some instances be described by the

Bruggeman Asymmetric Media theory but more often

by percolation theory. The IS spectra of percolation

systems will be discussed in later publications.

This paper addresses the immittance (i.e., impe-

dance and modulus) response of systems described by

the classical effective media (EM) theories and how

these relate to the underling microstructures. The

standard EM theories include the Maxwell-Wagner

(MW) (or Hashin-Shtrikman (HS)), Bruggeman

Asymmetric (BA) and Bruggeman Symmetric (BS)

models. In addition, the brick-layer model (BL) is also

considered, since it is so frequently used to describe

the behavior of grain boundary-controlled electro-

ceramics. The MW-HS, BA, and BL equations all

describe systems where one component coats the



other, while the BS equation applies to a percolation

type microstructure. However, as it is an EM theory, it

is included here for completeness and the BS

impedance spectra are compared with those obtained

from the other equations. An equivalent circuit

analysis is applied to these mathematically well

de®ned microstructures and important rami®cations

are discussed.

2. Effective Media Theories

Effective media theories from Maxwell to Maxwell-

Wagner (MW) and on to the Bruggeman Symmetric

(BS) and Bruggeman Asymmetric (BA) media and

percolation theories are reviewed, up until 1979, by

Landauer [1]. McLachlan et al. [2] also discussed

these topics and introduced the one exponent General

Effective Medium (GEM) equation. Merideth and

Tobias [3] give a particularly thorough review of the

MW, BA and related theories. For an in-depth

discussion and derivation of these equations, more

on anisotropic media and an introduction to percola-

tion theory, the reader is referred to the review articles

[1±9] and the references therein. References [4,5,9]

deal primarily with percolation theories and struc-

tures, which are not covered in this article. Emphasis

in this article will be placed on isotropic media, built

up using spherical elements.

The various binary phase media, which have a

complex conductivity s�m (resistivity r�m � 1=s�m),

discussed in this section will all consist of two

components, the highly conducting one with a

conductivity of s�h (resistivity r�` � 1=s�h) and a

more insulating one characterized by �1=s�` � r�h�.
In all equations, one can substitute the appropriate

complex dielectric constant �e� � er � iei�, complex

conductivity �s� � sr � isi�, or complex perme-

ability �m� � mr � imi� for the equivalent sm, sh or

s`. If s�h and/or s�` are functions of the angular

frequency o, all the equations for s�m can be given as a

function of f for ®xed o or o for ®xed f. The volume

fraction of the more conductivity component is given

by f and the less by f � 1ÿ f.

The ®rst effective media equations, due to

Maxwell, for a dilute dispersion of spheres with

s � sd (volume fraction Vd) in a matrix with s � so

and valid for Vd50:1 [3], are

sm ��sd � 2so ÿ 2Vd�so ÿ sd��=
�sd � 2so � Vd�so ÿ sd�� �1a,b�

here either sd � s` and so � sh or visa versa. In the

limits of a perfect insulator �s` � 0� or a perfect

conductor �sh �?� these equations become,

sm � sh

�
1ÿ 3

2
f

�
and rm � rh�1ÿ 3f� �2a,b�

All valid effective media theories must reduce to these

expressions in the dilute limit.

The well known Maxwell-Wagner relationships for

spherical inclusions are

sm ÿ sh

sm � 2sh

� f
s` ÿ sh

s` � 2sh

and
sm ÿ s`
sm � 2s`

� f
sh ÿ s`
sh � 2s`

�3a,b�

A MW medium can be visualized as built up from a

space-®lling array of coated spheres, as illustrated in

Fig. 1(b)(i) for Eq. (3a) and Fig. 1(b)(ii) for Eq. (3b).

When assembled together, the coating component

forms the matrix or host component (sh in Eq. (3a)

and s` in Eq. (3b)). Note that, as the coatings on the

spheres persist until f or f � 1, there is no percolation

Fig. 1. This ®gure illustrates the building blocks for the

microstructures which are characterized by (a). (i) & (ii)

Bruggeman's Symmetric Media equation (Eq. (5)), (b). (i) & (ii)

the Maxwell-Wagner equation (Eq. (3)) and (c). (i) & (ii)

Bruggeman's Asymmetric Media equations (Eqs. (4)). Note that,

as indicated in (a) and (b) by the progressively smaller coated

spheres, these media require a very large range of sphere size. In

(c) the second (third) coated sphere is an enlargement of the

region surrounding a small sphere of the ®rst (second) coated

sphere.
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threshold. fc � 0 or 1 is not a percolation threshold,

as the medium then consists of a single component.

The Maxwell-Wagner equations are also equivalent to

the Hashin-Shtrikman (HS) upper and lower bounds

for the conductivity (resistivity) of an isotropic two

component mixture and the Clausius-Mossetti equa-

tion for dielectrics. The microstructures, modeled by

the Clausius-Mossotti and HS equations are the same

as for the MW system. These equations are plotted as

curves b in Fig. 2.

The Bruggeman asymmetric media equations, for

spherical inclusions or grains, are [1±3],

sm ÿ s`� �3
sm

� �1ÿ f �3 sh ÿ s`� �3
sh

and

sm ÿ sh� �3
sm

� �1ÿ f�3 s` ÿ sh� �3
s`

�4a,b�

The building ``blocks'' for the media described by Eq.

(4a) are illustrated in column (c)(i) of Fig. 1, and for

Eq. (4b) in column (c)(ii). The derivation of these

equations also requires that there is a very large range

of the building block or sphere sizes. Again there is a

speci®c host or matrix component and no percolation

threshold. These equations are derived in [1] and [3]

and plotted as curves c in Fig. 2.

Bruggeman's symmetric medium equation for an

isotropic medium, built up from a very large size

range of the conducting and insulating spheres, shown

in columns a(i) and a(ii) of Fig. 1, is

f�sh ÿ sm�=�sh � Asm� � �1ÿ f�
�s` ÿ sm�=�s` � Asm� � 0 �5�

where A � 2 for this (spherical components) case.

The randomly arranged, space-®lling spheres shown

in columns (a)(i) and (a)(ii) of Fig. 1 are randomly

assigned to be conducting or non-conducting, so that a

fraction f of them have the higher conductivity

(therefore 1ÿ f or f of the spheres have the lower

conductivity). References [2] and [3], and the

references therein, give alternate expressions for A.

A is derived from the demagnetization coef®cients of

the ellipsoids building up the model media, which can

be made up out of either oriented or randomly

oriented ellipsoids. For both model and ``real or

continuum'' systems A always equals �1ÿ fc�=fc,

where fc is the critical volume fraction (percolation

type threshold) at which the conducting component

®rst forms a continuous path.

Note that an ideal effective medium is one in which

each sphere (ellipsoid) is surrounded by a mixture of

the two components that has the mean or effective

Fig. 2. Resistivity bounds for two component media as a function of volume fraction. One component has a resistivity rh � 3:336109

ohm-m �sl � 3610ÿ8� and the other rl � 3:336106 ohm-m �sh � 3610ÿ5�. The curves are (a) the brick-layer model (Eq. (6)), (b) the

Maxwell-Wagner equations (Eqs. 3a,b) or the Hashin-Shtrikman upper and lower bounds (c) the Bruggeman Asymetric Equations (Eqs.

(4a,b)), and (d) the Bruggeman Symmetric Equation (Eq. (5)).
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value for the medium. This requires that the dispersed

spheres (ellipsoids) have an effectively in®nite range

in size, and that the larger spheres are separated by

material containing smaller spheres. It is not valid

near a percolation threshold, where spheres (ellip-

soids) of similar size come, or nearly come, into

contact with each other [10]. In practice, effective

media theories work best for lower values of f or f,

where the dispersed spheres (ellipsoids) are further

apart.

Equations (3a) and (4a) reduce to Eq. (2a) when f is

small and s` � 0. Equations (3b) and (4b) reduce to

Eq. (2b) when f is small and sh �? or r` � 0 and

the equations are rewritten in terms of rm, r` and rh,

to avoid the in®nities. However, Eq. (5) reduces to Eq.

(1a) for all f �1ÿ f� if s` � 0, and to Eq. (1b) for all f
when Eq. (4) is rewritten in terms of rm, r`, and rh

with sh �? or r` � 0. Therefore Eq. (5) predicts a

metal-perfect insulator �sm � 0� transition (MIT)

when f � 2
3
�f � 1

3
� and s` � 0 and a perfect

conductor-normal conductor �rm � 0� transition

(PNT) when f � 1
3

and r` � 0. This behavior of

sm�rm� characterizes the behavior at a percolation

threshold, so the microstructure characterized by the

BS theory displays a percolation type behavior. Eq. 5

is plotted as curve (d) in Fig. 2 for A � 2�fc � 1
3
�.

Figure 2 shows that the resistivities of media

described by Eqs. (3) (lines b) and Eqs. (4) (lines c)

are dominated by the host or matrix material until f or

f approaches 1. However, if there is a percolation

type transition (or true percolation transition), as

occurs in Eq. (5) (line d), the properties of the medium

rapidly change from being dominated by one

component to the other near fc, where 05fc51.

The lines marked a in Fig. 2 are from the brick-layer

model [11,12], which will be discussed later.

While the MW-HS equations give the outer limits

of the resistivity (or conductivity) for isotropic media,

an examination of Fig. 2 shows that the BA equation

may well represent the practical inner limits for real

microstructures, where there is a de®nite unbroken

matrix, host or coating component. Should it be

necessary, in order to ®t a particular impedance

spectrum, there are equations or models which give

results which lie between the MW-HS and BA

models. The ®rst is the model in Merideth and

Tobias [3]. Unfortunately this only holds for low grain

or bulk fractions, which is usually not the case for

most ceramics, and therefore will not be further

examined.

Another possibility is to use Eq. (3a,b) to calculate

the conductivity for a coating component, which

consists of the conducting (insulating) component

impregnated with small spherical insulating (con-

ducting) grains. The conductivity of this coating

component can then be inserted into Eq. (3a,b) to

calculate the ®nal conductivity. For this interpolation

model, each building block would look like a single

block shown in Figs. 1(c)(i) and (ii). The volume

fraction of the dispersed phase in the coating

component and the ®nal media can be adjusted to

suit the particular circumstances. An example will be

given later in the paper.

The single exponent GEM equation given by,

�1ÿ f��s1=t
` ÿ s1=t

m �=�s1=t
` � As1=t

m �
� f�s1=t

h ÿ s1=t
m �=�s1=t

h � As1=t
m � � 0 �6�

where t is an exponent and A � �1ÿ fc�=fc, can also

be used. This equation was originally arrived at as an

interpolation between the BA and BS equations. It

reduces to the BS equation for t � 1 and all values of

fc, which is 1
3
�A � �1ÿ fc�=fc � 2� for an in®nite

array of spheres, as shown in Fig. 1(a) (i) and (ii).

For s` � 0, fc � 0 and t � 3
2

the GEM equation is

identical to the BA Eq. (4a), and for sh �?, fc � 1

and t � 3 it is identical to the BA Eq. (4b). Note that

for t � 1 and fc � 0 it reduces to the addition of

conducting slabs in parallel and for t � 1 and fc � 1

it reduces to the addition of conducting slabs in series.

These are the extreme values of the conductivity or

resistivity for an anisotropic medium and lie outside

curves b in Fig. 2 [2].

The brick-layer model, widely used in impedance

spectroscopy, consists of cubic bricks arranged on a

simple cubic lattice with the space between the bricks

being ®lled with mortar [11]. Usually, in this model,

the mortar is made to be rather thin and is more often a

poor conductor compared to the brick material.

However, the model can easily be solved [12] where

there are thick, or even very thick, layers of mortar,

which can be either more or less conducting than the

brick material. In order to derive the general case,

from a conductivity point of view, the building block

of the system can be considered as a square pipe of

mortar material, with the outside length equal to the

size of the unit cell (i.e., 1) enclosing a parallelepiped

with a cross-section equal to that of the brick, and unit
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length [12]. Note the wall thickness of the square pipe

is one half that of the actual mortar layer. Along the

length of the square cross-sectioned parallelepiped are

alternate layers of brick and mortar. Each parallele-

piped contains a single brick with two mortar caps,

each one half of the actual mortar thickness. The

conductivity of the square pipe can be calculated

directly, but the conductivity of the alternate layers of

brick and mortar must be added using the reciprocal

addition formula. The conductivities of the mortar

pipe and brick-mortar parallelepiped can then be

added as they are in parallel. If the edge of the brick is

D and the thickness of the mortar layers is d

�D� d � 1�, then the conductance of the pipe is

G�pipe� � s�mor� x �1ÿ D2� and for the paral-

lelopiped G�layers� � s�mor� x s�bri� x D2=�s�bri�
x d � s�mor� x D� respectively, which gives for the

total conductance or conductivity (as the cell is of unit

size) [12],

sbricklayer � sm � smor�1ÿ D2�
� smorsbriD

2=�sbrid � smorD� �7�

In this formula either sh � sbri and s` � smor or visa

versa. The two solutions are plotted as curves a in Fig.

2. Note that the cubic symmetry of the BL model

ensures that the conductivity is isotropic. Therefore,

where it lies outside of the MW-HS limits it is

fundamentally wrong.

Note that in deriving this formula it is assumed that

all current in the pipe remains in the pipe and all

current in the parallelepiped remains in the paralle-

lepiped. This is obviously not the case in practice as

the current will distort around the edges of the brick

cubes. The effect is minimal when the mortar layers

are very thin.

From Fig. 1 and the geometry of the brick-layer

model it is obvious that Eqs. (2), (3) and (4) are only

valid for systems where one component coats the

other and the critical volumes are all 1, 0 or very close

to these values. Should the coated (granular or

dispersed) grains make contact with each other at

volume fractions other than 0 or 1 [10], the

appropriate equations are those from percolation

theory [1,2,4±9] or the two exponent GEM Eq. [13±

15]. However, for speci®c microstructures (Fig. 1),

since it is an EM theory, the Bruggeman symmetric

medium equation (Eq. 5) will be the correct equation.

3. Extensions to Multiphase Composites

The easiest extension, both visually and mathemati-

cally, is the BS model described by Eq. (5). The most

general equation isX
n

�fn�sn ÿ sm�=�sn � Asm�� � 0 �8�

where fn is the volume fraction of the nth component

and sn its conductivity. For A � 2, the medium

consists of a mixture of n sets of spheres of different

conductivity, each with an in®nite range of sizes,

randomly mixed in the correct ratio so that the spheres

of similar sizes are well separated. Extensions to non-

spherical, ellipsoidal building blocks can be made.

This, as described earlier, requires a different value

for A. As media which can be described by Eq. (8) or

even Eq. (5) are not common, this extension will not

be taken any further.

For both MW and brick-layer structures, it is easy

to compute the conductivity of a system which has a

further thin coating layer on a sphere or cube of a

composite of known conductivity. This is accom-

plished by computing the conductivity of the inner

sphere or cube of the new composite, using the

appropriate volume fraction and conductivities in Eq.

(3), and then putting this conductivity into Eq. (3) for

the MW case and Eq. (6) for the brick-layer case, as

the granular, dispersed, or coated fraction. This

procedure can also be used to incorporate electrode

effects into a computation. However, the usual

arrangement for impedance spectroscopy is a parallel

plate capacitor con®guration. Therefore, the logical

way to incorporate an electrode effect is to add a

complex ``electrode'' resistance in series. This is done

using the formula,

sme � 1=�vm=sm � �1ÿ vm�=se� �9�
where sme, sm and se are the conductivities of the

medium and electrode in series, the effective medium

and the electrode, respectively, while vm is the volume

fraction of the media between the electrodes.

Another interesting combination, due to Sheng

[16], is where the coating component in a MW

medium (Eq. 3) is constructed from a two-component

BS medium. Such a coating component may be

realistic for some ceramics and, in particular,

cemented sedimentary rocks. As both phases in a

spherical BS medium are continuous in the range
1
3
5f5 2

3
, this structure allows the continuous solid
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cement component to bind the rocks, so that they have

structural integrity and can propagate sound. At the

same time a continuous ¯uid component can continue

to slowly carry out the cementation process and carry

a signi®cant electric current compared with the other

two solid components.

4. Results from Computer Simulations

In order to demonstrate that the above equations

produce the type of impedance spectra observed in

practice, a number of computer simulations are given

below. Note that all the equations given above have

been written in terms of the complex conductivity,

whereas impedance spectra are usually plotted giving

the imaginary component as a function of the real

component of the impedance and sometimes the

modulus, but very rarely as the admittance or

capacitance. Therefore, in this paper the complex

conductivity s�m, as obtained from the above equations

as a function of o for ®xed f, was converted to the

impedance or modulus using the following equations,

Zmr � GF�smr=�smr
2 � smi

2�� and

Mmr � ÿoZmi �10�
Zmi � ÿGF�smi=�smr

2 � smi
2�� and

Mmi � oZmr �11�
Here, GF is a geometric factor used to convert from

conductivity to conductance, etc. In this paper GF is

chosen so that the impedance or modulus given are for

a one centimeter cube of material.

The simulations plotted in the following ®gures are

all for a two-component system, where the more

conducting component has sh � 3610ÿ5�ohm-m�ÿ1
,

e0er � 3610ÿ11 (Farad/m) or shi � 3610ÿ11o, and a

characteristic oh of 16106; the more insulating one

has sl � 3610ÿ8�ohm-m�ÿ1
and e0er � 3610ÿ11

(Farad/m), or sli � 3610ÿ11o, and a characteristic

o1 of 16103. These parameters lie in the range where

IS is practical and, in some instances, allow two well-

separated arcs to be observed. In order to obtain

complete arcs (when two arcs were observed), o was

allowed to vary between 1 and 109. The latter

frequency is higher than is usually used in practice.

The above choice of conductivity parameters usually

led to perfectly semi-circular arcs. If the conductivity

Eq. [17,18] that produce depressed arcs for each of the

two components are used, then depressed arcs are, of

course, observed in all the simulations given below.

By using single relaxation-time components in the

present work it was possible to check for any arc

distortions arising from the underlying microstruc-

tures on which the above equations are based.

In Fig. 3 the Nyquist (Cole-Cole) plots are given,

using the real Zmr and imaginary Zmi impedances

obtained from Eqs. (3), (4) and (7) using the above

parameters, together with a volume fraction (f) of

0.01, in the case where conductor coats the more

insulating spheres (i.e., a conductor matrix system).

Notice how close the results from the Maxwell-

Wagner and brick-layer equations lie. Eq. (3) gives a

far higher dc resistance than Eq. (4), in agreement

with Fig. 2. We observed that the peak o of the semi-

circular arcs characterizing these conductor matrix

media moves from 103 to 106 as the volume fraction

of the conductor increases. As no interesting

impedance arcs are obtained for higher volume

fractions of an all-dominating conducting matrix, no

more of these are presented.

If plots of Zmi against Zmr and Mmi against Mmr are

made with the more insulating material as host or

matrix, for all volume fractions, it becomes obvious

that the modulii plots give more information in the

form of double arcs over a larger range of volume

fractions than the impedance plots. In both Zmi ÿ Zmr

and Mmi ÿ Mmr plots, where two arcs are observed,

they are almost perfect semi-circles with the o
characteristic of each component lying at the

Fig. 3. The imaginary impedance �ÿZmi� plotted against the real

impedance �Zmr� using the MW (Ð), BA (......) and ``bricklayer''

(ÿÿÿÿÿ) equations, with f � 0:01. The conducting

component has sh � 3610ÿ5�ohm-m�ÿ1
and eoer � 3610ÿ11

(Farad/m) and the insulating component sl � 3610ÿ8�ohm-m�ÿ1

and eoer � 3610ÿ11 (Farad/m). The exponent of o is given at

certain key points on the plots.
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associated maximum value of the imaginary impe-

dance (modulus), as they should for components with

a single relaxation time. No arcs are obtained for

Ymi ÿ Ymr and emi ÿ emr plots.

Figure 4 shows plots of real Mmr against imaginary

Mmi for a conducting volume fraction of 0.2. Here the

important features are that, as expected, the MW and

brick-layer plots no longer coincide and the peak of

the high frequency arc is not at 106. Note that for this

value of f, an impedance plot does not give separated

arcs.

Figures 5 and 6 show impedance plots for the

conductor volume fractions of 0.99 and 0.90,

respectively. The MW microstructure characterizing

Fig. 5 � f � 0:01� is the easiest to visualize, as it

consists of a large range of conducting spheres, each

with a thin (0.003344 of the total radius) insulating

coating. If the volume fraction � f � of the insulating

layer is increased from 0.01 to 0.02, the width of the

low frequency arc (in ohms) doubles and if f is

decreased to 0.005, the original width of this arc

halves. In both cases the width of the high frequency

arc stays almost constant as the actual volume of this

component barely changes. These changes are exactly

what one would expect.

If the parameters for the high conductivity

(interior) region are decreased to sh �
1610ÿ5�ohm-m�ÿ1

and e0er � 1610ÿ11 (Farad/m),

so that the characteristic o remains at 106 rad/s, the

width of the arc characterizing the conducting

medium increases by a factor of 10, due to the

increased impedance. On the other hand, if the

parameters for the high conductivity medium are

increased to sh � 1610ÿ4 (ohm-m) and

e0er � 1610ÿ10 (Farad/m), so that the characteristic

o � 106 rad/s remains the same, the width of the high

frequency arc decreases by a factor of ten, becoming

just visible on the scale of Fig. 6. In all cases the value

for the o characterizing each medium remains at the

top of the arc. These observations are obviously

consistent with the changes made in the parameters.

The brick-layer model plots are again in good

agreement with the MW plots, due to the low f
value of the mortar.

For comparison purposes, the Bruggeman

Asymmetric model has been shifted away from the

origin in Fig. 5. The shifted BA arc has a very similar

high conductivity arc and a vanishingly small low

conductivity arc. This suggests that in this BA

Fig. 4. The imaginary modulus �Mmi� plotted against the real modulus �Mmr� using the MW (Ð), BA (.......) and ``brick-layer''

(ÿÿÿÿÿ) equations, with f � 0:20. The conducting component has sh � 3610ÿ5�ohm-m�ÿ1
and eoer � 3610ÿ11 (Farad/m) and the

insulating component sl � 3610ÿ8(ohm-m)ÿ1 and eoer � 3610ÿ11 (Farad/m). The exponent of o is given at certain key points on the

plots.

Fig. 5. The imaginary impedance �ÿZmi� plotted against the real

impedance �Zmr� using the MW (Ð), BA (......) and ``brick-

layer'' (ÿÿÿÿÿ) equations, with f � 0:99. The conducting

component has sh � 3610ÿ5�ohm-m�ÿ1
and eoer � 3610ÿ11

(Farad/m) and the insulating component sl � 3610ÿ8(ohm-m)ÿ1

and eoer � 3610ÿ11 (Farad/m). The exponent of o is given at

certain key points on the plots. Note that the BA plot has been

shifted away from the origin to facilitate comparison with the

other curves.
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microstructure the in®nite size range of conducting

spheres must lie much closer to each other than in the

MW microstructure, and effectively short-out the

insulating medium. This would appear to be con-

sistent with the microstructures shown in Fig. 1.

Figure 6 shows that when 0.1 volume fraction of

the insulating medium coats the conducting spheres,

the contribution of the conducting spheres to the

impedance is nearly negligible for the MW micro-

structure and the brick-layer model. The plots for the

MW equation and brick-layer model are now only in

reasonable agreement. However, the insert again

shows that, even at this volume fraction, the

conducting spheres in a BA microstructure still lie

close enough together to give a relatively negligible

contribution to the impedance vis-aÁ-vis the MW

microstructure.

As the MW media equations and structure are

equivalent to the Hashin-Shtrikman upper and lower

bounds for an isotropic medium, the low frequency

arcs in Figs. 5 and 6, due to the insulating component,

are the maximum width (resistivity) obtainable for

this component. The fact that the arcs due to the high

conductivity component are similar for the MW and

BA media is due to the fact that the current must

maximize its path in this component in order to obtain

the required minimum resistance. The very different

arcs for the low conductivity component in the MW

and BA media show that the size of the low

conductivity component arc depends critically on

microstructure, even in media where the low

conductivity component obviously coats the high

conductivity component.

Formulae which give results intermediate between

the MW-HS and BA equations were described above.

In Fig. 7 the impedance arcs resulting for these

equations, using the same conductivities for the

components as before, are given for f � 0:99 and

so are to be compared with Fig. 5. For the media

obtained by using Eq. (3b) twice, with f � 0:9 each

time �total f � 0:99�, is given by the short dash line,

hereafter referred to as the insulator sphere impreg-

nated coating model. All other lines are calculated

using the GEM equation (Eq. 6), with fc �
0:999999999999 (to avoid the in®nity). The outer

solid line curve, where a large semicircular arc

terminates at a real impedance of 21 Mohm, is for

t � 1 and is larger than the MW-HS value of

14.6 Mohm (Fig. 5). The long dash curve is for

t � 1:5 and the inner solid curve is for t � 3. As in

Fig. 5 the arc for the conducting material is virtually

the same in all cases, again indicating that the

difference in the low frequency impedance arcs

between the models is governed by how effectively

the microstructure of the insulating component

separates the conducting spheres. Note that the t � 3

curve is similar to the BA curve (Fig. 5), as is to be

expected since they are identical when s` � 0. The

possible values of the exponents in the BA equations,

based on the geometry of the grains, are discussed in

Fig. 7. The imaginary impedance �ÿZmi� plotted against the real

impedance �Zmr� using the insulator sphere impregnated coating

model, described in the text and given by the short dash line; also

Eq. (6) (GEM model) with t � 1 (upper solid line), t � 1:5 (long

dash line) and t � 3 (lower solid line) for f � 0:99. The

conducting component has sh � 3610ÿ5�ohm-m�ÿ1
and

e0er � 3610ÿ11 (Farad/m) and the insulating component

sl � 3610ÿ8�ohm-m�ÿ1
and e0er � 3610ÿ11 (Farad/m). The

exponent of o is given at certain key points on the plot.

Fig. 6. The imaginary impedance �ÿZmi� plotted against the real

impedance �Zmr� using the MW (Ð), BA (.........) and ``brick-

layer'' (ÿÿÿÿÿ) equations, with f � 0:90. The conducting

component has sh � 3610ÿ5�ohm-m�ÿ1
and eoer � 3610ÿ11

(Farad/m) and the insulating component sl � 3610ÿ8(ohm-m)ÿ1

and eoer � 3610ÿ11 (Farad/m). The exponent of o is given at

certain key points on the plots. The inset diagram is an

enlargement of the high frequency region.
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Merideth and Tobias [3]. Unfortunately, a t of less

than 3 is not permitted in the 3D BA model. Therefore

for exponents less than three this model is one without

a characterizable microstructure.

At the other extreme of the volume fraction, when

f � 0:01, the following results were observed, but not

shown in a ®gure. Equation (6), with fc � 1610ÿ12

(to avoid the in®nity for fc � 0), gives a semi-circular

arc for all t values. For t � 1, which when A is in®nity

�fc � 0� is equivalent to adding conductivities in

parallel and an anisotropic microstructure of alternate

slabs in parallel, the low frequency real impedance is

280 Mohms, which is, as to be expected lower than the

isotropic MW-HS value of 430 Mohm (Fig. 3). For

t � 1:5 the real impedance is 820 Mohm and for t � 3

it is 138 Mohm.

The model, where the conducting coating compo-

nent is one already impregnated with insulating

spheres and, as has already been described, consists

of using the MW-HS equation twice, with f � 0:1
each time to give a ®nal j of 0.01, gives a real

impedance of 575 Mohm. This value lies closer to the

MW-HS value of 430 Mohm than the BA value of

1420 Mohm.

One conclusion of this paper is that the presence of

smaller coated particles between the bigger ones

lowers the resistivity for the insulator matrix/host

situations and increases it for the conductor host

situations. Therefore, if the MW-HS model is not

correct and if the results turn out to lie between the

MW-HS and BA models, then after a careful

examination of the microstructure and the grain or

bulk size distribution, a model involving multiple use

of the MW-HS equation may work. This, as

previously described, would involve dividing the

total grain volume into appropriate large and small

volume fractions.

Note that the equivalent circuit for the MW media

has been derived by Bonanos and Lilley [19] for a thin

coating of insulator on conducting spheres and turn

out to be two parallel RC elements in series with each

other.

From the above and other simulations it can be

seen that the brick-layer model and the MWequations,

in spite of their very different ``microstructures'', give

similar results for small volume fractions but when f
is close to 0.5 the results can differ by up to 50%. One

reason for this difference is the fact that the current

will, in practice, distort around the sharp edges of the

bricks, which is not taken into account in the

bricklayer model. This error would, of course, be

largest when the thickness of the layers and lengths of

the bricks are similar in size. Note that the BL and

MW-HS models both have a conducting layer

thickness that, for a given volume fraction, is a

constant fraction of the cube edge or the sphere

diameter, whereas a constant layer thickness irrespec-

tive of the grain size is often observed. In practice, the

other problem with the BL model is the constant grain

size and square corners, while the other problem with

the MW-HS model is the in®nite range of sphere size

and perfectly round ``corners.'' However, the fact that

the results from these two models agree so closely, for

low or high f values, indicates that the above

problems are not as serious as one may think and

that they are both reasonably valid models for certain

classes of real media.

The results for simulated IS spectra, using the BS

equation (Eq. 5) on systems with the same two

components �s � 3610ÿ5 and 3610ÿ8�Ohm-m�ÿ1

and a common e0er of 3610ÿ11 (Farad/m)) as above,

were also investigated. The Zmi ÿ Zmr and Mmi ÿMmr

curves obtained for f4 1
3

are virtually perfect single

arcs, with the peaks characterized by the characteristic

frequency of the major component. The plots given in

Fig. 8 are Mmi ÿMmr for f � 0:20, 1
3

and 2
3
. The

volume fraction 0.20 was chosen as it gives a double

arc similar to those in Fig. 4. This is not too surprising

because, at this value of f, the system consists of

clusters of conducting spheres completely surrounded

(coated) by insulating spheres. As in the MW, BA and

brick-layer simulations, a double arc is not seen for a

Fig. 8. The imaginary modulus �Mmi� plotted against the real

modulus �Mmr� using the BA equation, with f � 0:20 (Ð),
1
3

(.........) and 2
3

(ÿÿÿÿÿÿ). The conducting component has

sh � 3610ÿ5�ohm-m�ÿ1
and eoer � 3610ÿ11 (Farad/m) and

the insulating component sl � 3610ÿ8(ohm-m)ÿ1 and

eoer � 3610ÿ11 (Farad/m). The exponent of o is given at certain

key points on the plots.
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Zmi ÿ Zmr plots at f � 0:20. The other two volume

fractions were selected because the high conductivity

component becomes continuous at f � 1
3

and the

insulating component becomes discontinuous at

f � 2
3
. Between f � 1

3
and 2

3
both components have

continuous percolation channels. What can be seen

from these curves and other curves is that this medium

shows both depressed and distorted arcs, especially

near f � 1
3
, due only to this particular geometrical

arrangement of the conducting components. Below

f � 1
3

and above f � 2
3
, the depression and distortions

decrease so that at f � 0 and 1 perfect semi-circular

arcs are obtained. Note that the medium is always

isotropic and the depression and distortion of the arc

depends on the relative values of the conductivity of

the two components.

Another case where a depressed arc was obtained

from the nature of the shape or distribution of the

conducting components was where the MW model

was extended to randomly oriented, but coated (MW

medium), ellipsoids of rotation [20], i.e., still a

macroscopically isotropic medium. Therefore, in the

interpretation of IS spectra the depression of an arc, or

arcs, due to particular or peculiar arrangement of

crystal shapes and distributions of coated components

cannot be ruled out, even though the two components,

grain and coating, may each have a single character-

istic frequency.

5. Equivalent Circuit Fitting

Experimental impedance data are often analyzed in

terms of equivalent circuits involving resistors and

capacitors. Several commercial software packages,

e.g., ``Equivalent Circuit'' [21], allow deconvolution

of individual R, C elements. We applied ``Equivalent

Circuit'' to the EM model spectra in the present work.

With the exception of the BS spectra between the

percolation thresholds, we consistently obtained well-

behaved ®ts involving combinations of usually one or

two RC elements (resistor and capacitor in parallel)

which are further connected in series, (RC)(RC) or

parallel, ([RC][RC]), employing ``Equivalent

Circuit'' notation [21]. It should be stressed that,

with the exception of the distorted BS arcs in Fig. 8,

little or no arc depression or distortion due to the

microstructure was observed (Figs. 3±7).

What is troubling about the equivalent circuit ®ts

obtained is that the component values obtained are as

much a function of the microstructure as they are of

the complex conductivities of the composite compo-

nents. This can be seen in Table 1, where the number

of Z-arcs, M-arcs, and the ratio of low frequency-to-

high frequency capacitance and resistance are

tabulated. The latter values were obtained from

Bode plots of total capacitance or impedance vs.

frequency. Resistance ratios are reported only for

cases where two plateaus were clearly visible in the

impedance Bode plot. It should be kept in mind that an

identical real permittivity was employed for each

component in the EM modeling and that the

conductivities differ by 1000. The signi®cant low

frequency capacitance in the case of MW-HS and BL

models (with insulating coatings) is therefore due to

the microstructure, i.e., at low frequencies the thin

coatings (or grain boundaries) give rise to large

capacitors. Note too the divergence of the MW-HS

and BL equivalent circuits as the volume fraction of

the coating (grain boundary) phase increases. It must

therefore be stressed that without independent knowl-

edge of the microstructure, e.g., second phase volume

fraction, distribution, thickness, etc., which would

enable one to calculate an effective geometrical

constant for the impedance of each component, it is

impossible to derive the correct complex conductivity

for each component from equivalent circuit ®tting of

spectra. This has important rami®cations for the

interpretation of experimental impedance spectra in

that one cannot obtain quantitative microstructure and

conductivity parameters for the components from an

equivalent circuit analysis alone.

It can be observed that even higher low frequency

capacitances are observed for the BA model at the

same insulator fractions as in the BL and MW-HS

cases. This observation, combined with the compara-

tively smaller increases in low frequency resistance,

must arise from the unique microstructure, which

brings conductor particles much closer together than

in those models.

6. Application to Experimental Electroceramic
Systems

A system which closely approximates the BA model

in terms of microstructure and impedance response is

that of insulating sand particles in hardened cement

paste (HCP), commonly referred to as ``mortar.'' HCP

is a reasonably good ionic conductor, if fully saturated
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with water, by virtue of a highly conductive pore

phase, and impedance spectroscopy has become an

important tool to study microstructural evolution [22].

We can treat HCP as a homogeneous, conductive

matrix phase, and add sand grains having a wide range

of particle sizes to produce a microstructure which

closely approximates the BA model in Fig. 1(c).

Impedance spectra consist of a single impedance arc,

as in Fig. 3 [23]. Furthermore, the dc (low frequency)

conductivity closely follows Eq. (4a) versus volume

fraction of sand, as shown in Fig. 9, the only exception

being during early stages of hydration, where the

temporary in¯uence of a more conductive ``rim'' or

``interfacial transition zone'' on the sand grains makes

a minor contribution [23]. At early times ( prior to set,

when the paste is a ``slurry'' of sand particles in a

matrix of water and much smaller cement grains) and

later times (well after set), this additional component

can be neglected and the BA model is an excellent

description of behavior (see Fig. 9).

Another application of the BA model involves

porosity in highly porous, conductive, polycrystalline

Table 1. Equivalent circuit ®tting for various models

Model description No. Z-arcs No. M-arcs C(Lo)/C(Hi R(Lo)/R(Hi)

BA C-0.01 1 1� (or 2) 1.23 Ð

BA C-0.10 1 1� (or 2) 1.46 Ð

BA C-0.20 1 1� (or 2) 1.45 Ð

BA I-0.10 2 (or 2� ) 1 133.15 2.63

BA I-0.20 2 2 71.60 7.43

Model description No. Z-arcs No. M-arcs C(Lo)/C(Hi) R(Lo)/R(Hi)

BL C-0.01 1 1 1.01 Ð

BL C-0.10 1 1� 1.03 Ð

BL C-0.20 1 1� 1.07 Ð

BL I-0.01 2 2 176.35 4.36

BL I-0.10 2 2 25.44 36.05

BL I-0.20 2 2 11.82 70.97

Model description No. Z-arcs No. M-arcs C(Lo)/C(Hi) R(Lo)/R(Hi)

BS C-0.01 1 2 1.03 Ð

BS C-0.10 1 2 1.42 Ð

BS C-0.20 1 2� 2.44 Ð

BS C-0.80 1 1 1.21 Ð

BS C-0.90 1 1 1.09 Ð

BS C-0.99 1 1 1.01 Ð

Model description No. Z-arcs No. M-arcs C(Lo)/C(Hi) R(Lo)/R(Hi)

MW-HS C-0.01 1 1 1.03 Ð

MW-HS C-0.10 1 1� 1.33 Ð

MW-HS C-0.20 1 1� 1.74 Ð

MW-HS I-0.01 2 1 176.66 4.35

MW-HS I-0.10 2 2 26.66 34.62

MW-HS I-0.20 2 2 12.64 66.47

BA: Bruggeman Asymmetric Model, BL: Brick Layer Model, BS: Bruggeman Symmetric Model, and MW-HS: Maxwell-Wagner (or Hashin-

Shtrikman) Model. ``I-'' and ``C-'' indicate the type of the coating materials: ``I-'' for an insulating component and ``C-'' for a conducting

component). Numbers indicate the volume fractions of the insulating or conducting components. (e.g., BA C-0.01: Bruggeman Asymmetric

Model with a volume fraction of 0.01 in the case where the conductor coats the more insulating spheres (i.e., a conductor matrix system). A``�''

indicates the hint of an additional arc.
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ceramics. Given a relatively wide range of pore sizes

and a disconnected pore network, the above results

show that Eq. (4a) could be a good model description

of composite conductivity at high overall levels of

porosity, i.e., outside the dilute limit. Another model

for this is Eq. (3a). In the dilute limit, i.e., porosity less

than 10%, the results would not differ by much.

A system which approximates the BL or even the

MW-HS microstructure with a highly conducting

coating or grain boundary phase involves the solid

state reaction of La2O3 and CuO to form La2CuO4

[24]. Impedance spectra consist of a single impedance

arc, as in Fig. 3. Furthermore, the conductivity rises

precipitously vs. volume fraction of La2CuO4 (the

most highly conductive of the three phases) which

was interpreted as Cu rapidly diffusing along the

La2O3 particles where it reacts to form a 3D network

of La2CuO4 [24]. Examples exist where grain

boundaries in single-phase ceramics are more con-

ductive than the grain cores (e.g., [25], based on point-

probe dc studies of large-grained samples), however

impedance measurements in such systems are usually

not possible due to the small time constants �R6C�
involved and the correspondingly high frequencies

required (i.e., 4 MHz).

On the other hand, there are numerous examples of

ceramics with continuous and resistive grain

boundary phases and/or space-charge layers, which

are candidates to be modeled by the BL, MW-HS or

BA equations. At this stage most systems have only

been analyzed using equivalent circuits or the BL

model. Examples of grain boundary-controlled elec-

troceramics include varistors, positive temperature

coef®cient of resistance (PTCR) thermistors,

boundary-layer capacitors, and even magnetic ferrites

(with oxidized, high resistance grain boundaries to

reduce eddy-currents). Studies of an electroceramic

system, cerium dioxide, over a wide range of grain

sizes, from nanometer to micrometer is reported in

Hwang et al. [12]. For micrometer-grained material

two distinct impedance arcs were obtained, as in Fig.

5, with each arc (grain interior and grain boundary)

being well-behaved, i.e., little or no arc depression.

Nanophase samples, however, exhibited much smaller

resistivity ratios (grain boundary-to-grain interior),

leading to vanishingly small grain boundary (low

frequency) arcs. This is consistent with enhanced

defect populations and transport characteristics asso-

ciated with surfaces/grain boundaries in ceria [26,27].

A classic instance of grain boundary in¯uence on

immittance spectra involves the ionic conductor,

yttria-stabilized zirconia (YSZ). Bonanos et al. [28]

report a Nyquist plot (see Fig. 4.1.19(b) in [28]) for

YSZ (6 m/o Y2O3) at 240�C, showing distinct bulk,

grain boundary, and electrode (Pt) arcs. They also

reported an SEM/TEM-derived ratio of grain

boundary width-to-grain size ratio of approximately

10ÿ 3 (* 10 nm vs. *10 mm). In the MW-HS model,

this would require f � 0:994. When ®tting this data,

using the MW-HS expressions, certain assumptions

based on measured parameters are made. The ®rst is

that er � 12 or ereo � 1:05610ÿ10 (Farad/m) for the

grains, which gives sg � 1:1610ÿ5 (ohm-m)ÿ1, if

the 104 and 102 Hz theory and experimental points are

to line up. If one assumes that er is the same for the

grain boundaries one obtains sb � 5:5610ÿ9

(ohm-m)ÿ1 and f � 0:9991, for the theoretical and

experimental 10 and 1 Hz points to line up. f �
0:9991 corresponds to an effective electrical grain

boundary thickness of 1.5 nanometers. This result is

given in Fig. 10(a). If one assumes alternatively that

f � 0:994 then sb � 3:68610ÿ8 (ohm-m)ÿ1 and

ereo � 7:03610ÿ9 (Farad/m) for the 10 and 1 Hz

points to line up. The result using these parameters is

given in Fig. 10(b). Based on an electrode volume

fraction of 10ÿ 6, a se of 6:5610ÿ12 (ohm-m)ÿ1 and a

ereo of 3:1610ÿ10 (Farad/m) give an arc in which the

theoretical and experimental 10ÿ 2 points line up, as is

Fig. 9. Mortar (cement paste plus sand) conductivity normalized

by paste conductivity vs. volume fraction of sand at 372 h of

hydration [23]. The line corresponds to the Bruggeman

Asymmetric model with a dispersed phase of zero conductivity.
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shown in Figs. 10 (a) and (b). (These values for the

electrodeÐvolume fraction and the electrical para-

metersÐare quite arbitrary; any number of

combinations are capable of simulating the electrode

response.) Of these non-optimized ®ts, the ®rst (®xed

er) is probably the better as the depths of the minima at

100 and 1 Hz are much closer to the experimentally

observed minima than the second (®xed f) case,

where the theoretical minimum at 100 Hz is lower and

the one at 1 Hz is higher than the experimental results.

Note too that the theoretical curves are perfect semi-

circular arcs, as only a single relaxation time has been

assumed, whereas the experimental data shows the

usual arc depression.

It is surprising that the MW-HS ®t quality depends

upon the choice of ®xed e or ®xed grain boundary

thickness, since this should not be the case for the BL

model (with negligible grain boundary thickness).

This distinction between the two models could be

important in deciding which is more valid given a

high quality data set (known grain size and grain

boundary thickness).

Not too surprisingly, considering the structure of

the material, a ®t of the same data to the BA equation

does not work. A BA ®t was done using a f of 0.994

and the lowest possible ereo of 8:85610ÿ12 (Farad/

m), which gives the minimum allowable grain

boundary conductivity �4:6610ÿ11(ohm-m)ÿ1�, and

maximum arc width, if the characteristic oc of the

grain boundary material is to remain the same as in

Fig. 10(b). The resulting arc is both distorted and

depressed with a real zero frequency impedance of

36106 ohms. It is obviously now essential to do an

optimized ®t on the original IS data of well

characterized samples, determining and using the

appropriate (optimum) expressions for the conductiv-

ities, inserting where possible separately measured

conductivity and volume fraction parameters.

If they can be shown to ®t and model the

experimental data for certain ``coated grain'' systems,

the BL, MW-HS, and BA models would have the

advantage in that the actual complex conductivities

and volume fractions of the components could be

inserted or determined. In order to obtain a unique ®t,

it will almost certainly be necessary to insert

reasonably accurate, independently determined ®xed

values for some parameters, such as the real dielectric

constant and the volume fractions of ``phases,'' and to

obtain the remainder from the ®tting program. Where

depressed arcs are observed, still further parameters

will be needed.

The correct way and only way of ®tting experi-

mental data is to ®t the data to the appropriate

equation (with electrode effects if necessary), using

the measured real and imaginary values as a function

of frequency, for a given f value. The inserted (®xed)

and ®nal ®tted parameters can then be used to obtain

the desired electrical response, such as impedance or

modulus and a Nyquist plot of this quantity made.

7. Conclusions

Effective medium theories can be readily extended

from dc to ac applications, such as impedance

spectroscopy, by appropriate substitution of complex

parameters (conductivity, dielectric constant, etc.)

into the basic equations. Our consideration of the

Maxwell-Wagner-Hashin-Shtrikman, Bruggeman

(a) (b)

Fig. 10. Plots of the imaginary impedance �ÿZmi� against the real impedance �Zmr�. The circles are the experimental results for

ZrO2�6%Y2O3� at 240�C [28]. The solid lines are two different ®ts of the MW-HS equation and a series electrode resistor to these results.

More details and the parameters used in are given in the text. The exponent of the frequency is given at certain key values by the squares

and ®lled circles.
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Asymmetric, Bruggeman Symmetric and brick-layer

equations and their underlying microstructures leads

to the follow conclusions:
* At low volume fractions of a conductive coating

(matrix), the MW-HS and BL models yield

virtually identical single-arc impedance spectra.

Therefore they are equivalently good phenomen-

ological representations for electroceramics with

highly conductive grain boundaries or particle

compacts with uniform and continuous coatings of

the conductive phase.
* At low volume fractions of an insulating coating

(matrix), the MW-HS and BL models yield

virtually identical dual-arc impedance spectra.

Therefore they are equivalently good phenomen-

ological representations for electroceramics with

resistive grain coatings (boundaries) or particle

compacts with uniform and continuous coatings of

insulating phase, if the volume fraction of the

coating is small.
* As the MW-HS and BL models give virtually

identical results in the low volume fraction

(coating) matrix limit, whether the coating is

conductive or insulating, this implies that the

MW-HS equations can model systems where the

range in the size of the coated spheres is not

large.
* The BA model differs markedly from the MW-HS

and BL models in the low fraction (coating) matrix

limit, whether the coating is conductive or

insulating, but especially so with an insulating

coating. This shows that even when the coating is

continuous (3D) the size and space distribution of

the grain or spheres plays a role in determining the

complex conductivity and the IS arcs. In the BA

case, the closer proximity of conducting spheres to

each other effectively shorts-out the insulating

medium.
* At high volume fractions of a conducting matrix

phase, the MW-HS and BA models both yield

single-arc impedance spectra and are models for

systems with isolated ``particles'' of insulating

phase (e.g., porosity, residual ``parent'' particles

in solid state reaction, sand grains in mortar, etc.).

Which is the appropriate one must be determined

by ®tting the experimental arc and its frequency

markers to either equation or an interpolation. DC

conductivity results plotted against volume frac-

tion is also useful in determining the appropriate

model.

* In compacts or sintered specimens involving two

phases, which do not coat or wet each other, the

BS model is an appropriate starting point to

describe the immittance responses and also

conductivity vs. volume fraction behavior.

However as, in most real or continuum systems

of this nature, grains of nearly equal size come in

contact with each other, it is usually necessary to

use the percolation or one- or two- exponent GEM

equations to describe the experimental results.
* Distinct dual-arc behavior is more often observed

in modulus plots; it is strongly recommended that

these be evaluated alongside impedance plots

when attempting to interpret the immittance

response of a given system.
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